From Research to Production

What they didn't teach you at grad school

Sophie Watson sophie@redhat.com

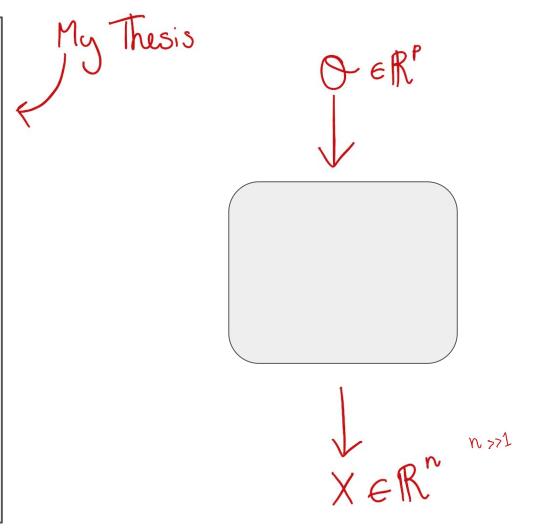
Sequential Methods in Approximate Bayesian Computation

Sophie Watson

A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science

School of Mathematics, September 2017

Word count: 60,000



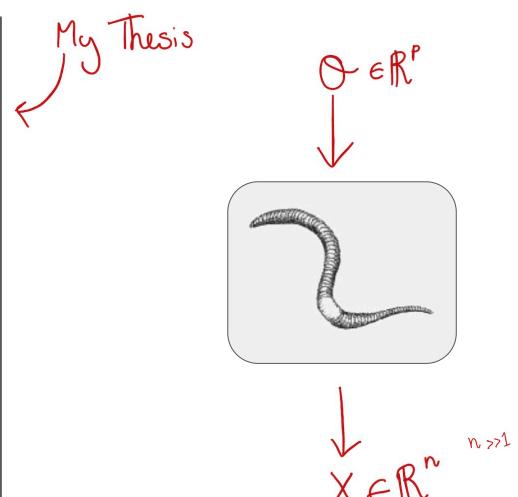
Sequential Methods in Approximate Bayesian Computation

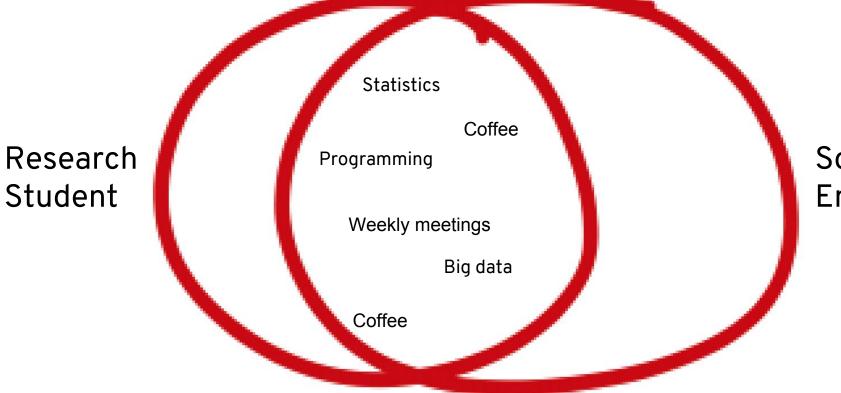
Sophie Watson

A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Science

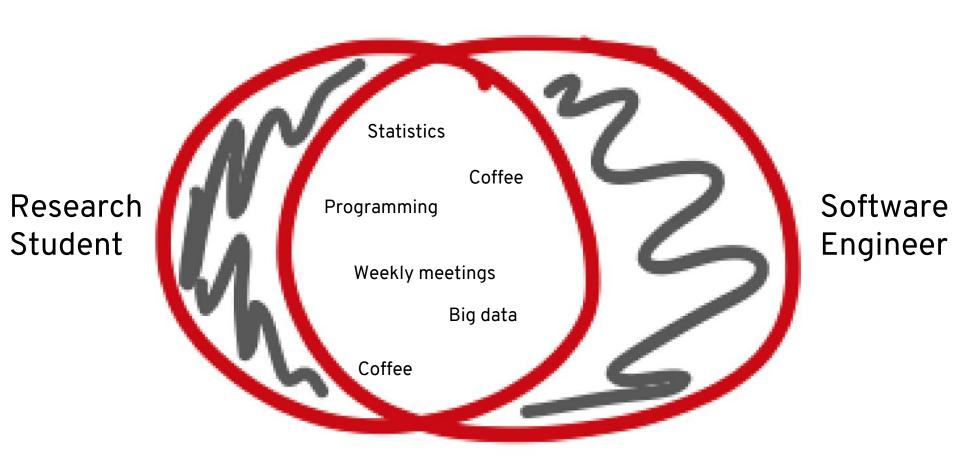
School of Mathematics, September 2017

Word count: 60,000



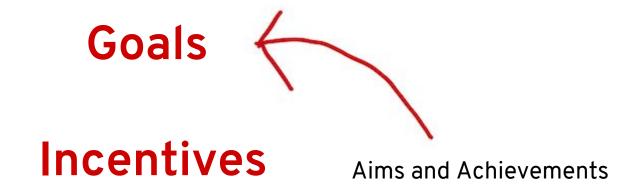


Software Engineer

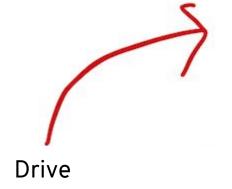


Goals

Incentives



Goals



Incentives

Goals

Incentives

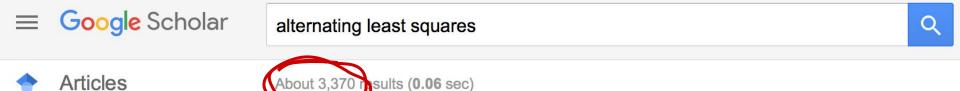
Constraints

Barriers and Borders

Recommendation Engines

NETFLIX

goodreads



Systematic comparison and potential combination between multivariate curve resolution—alternating least squares (MCR-ALS) and band-target entropy minimization ...

Articles

Systematic comparison and potential combination between multivariate curve resolution—alternating least squares (MCR-ALS) and band-target entropy minimization ...

code ____ ture ___ do better trup params ___ around ___ do better

Matrix factorization techniques for recommender systems

Y Koren, R Bell, C Volinsky - Computer, 2009 - ieeexplore.ieee.org

As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels

Cited by 4416 Related articles All 45 versions

Data

- MovieLens [1]
- Widely used in recommendation engine research
- 26 million ratings / 45,000 movies / 270,000 users
- Ratings.csv
 - (userId, movieId, rating, timestamp)
 - \blacksquare (100, 200, 3.5, 2010-12-10 12:00:00)

Modelling

```
my ratings = [(34, 3.5), \#Babe]
(2137, 4.5), #Charlotte's web
(2123, 4), # All Dogs Go To Heaven
                                                 (film id, rating)
(2087, 3), # Peter Pan
(4241, 2), # Pokemon 3
(4232, 4.5), #Spy Kids
(6297, 5), # Holes
(6287, 1), # Anger Management
(4270, 0.5), # The Mummy Returns
(7285, 0.5), # Thirteen
(7247, 4.5), # Chitty Chitty Bang Bang
```

```
new_ratings = ratings.union(my_ratings)
```

```
model = ALS.train(new_ratings, rank = 6, iterations = 10, lambda_=0.06)
```

Scaling Out

```
model = ALS.train(new_ratings, rank = 6, iterations = 10, lambda_=0.06)
```

Scaling Out

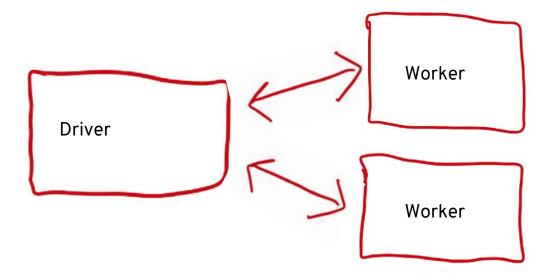
```
model #ALS.train(new_ratings, rank = 6, iterations = 10, lambda_=0.06)
```

from pyspark.mllib.recommendation import ALS

Scaling Out

```
model = ALS.train(new_ratings, rank = 6, iterations = 10, lambda_=0.06)
```

from pyspark. Illib.recommendation import ALS



Prediction

```
unseen_prediction = model.predictAll(unseen)
unseen_prediction.takeOrdered(10, lambda x:-x[1])
```

```
[('Marihuana (1936)', 8.27, 1),
  ('Eros Plus Massacre (Erosu purasu Gyakusatsu) (1969)', 6.15, 3),
  ('"Man Vanishes', 5.44, 3),
  ('Dead in Tombstone (2013)', 5.25, 5),
  ('Connections (1978)', 5.21, 29),
  ('Expelled from Paradise (2014)', 5.17, 3),
  ('Patton Oswalt: Tragedy Plus Comedy Equals Time (2014)', 5.17, 5),
  ('The War at Home (1979)', 4.97, 5),
  ('Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 4.95, 8),
  ('Island at War (2004)', 4.92, 1)]
```

Prediction

```
unseen_prediction = model.predictAll(unseen)
unseen_prediction.takeOrdered(10, lambda x:-x[1])
```

```
[('Marihuana (1936)', 8.27 1),
('Eros Plus Massacre (Frost Parasu Gyakusatsu) (1969)', 6.15 3),
('"Man Vanishes', 5.44 3),
('Dead in Tombstone (2013), 5.25, 5),
('Connections (1978)', 5.21, 29),
('Expelled from Paradise (2014)', 5.17, 3),
('Patton Oswalt: Tragedy Plus Comedy Equals Time (2014)', 5.17, 5),
('The War at Home (1979)', 4.97, 5),
('Am Ende eiens viel zu kurzen Tages (Death of a superhero) (2011)', 4.95, 8),
('Island at War (2004)', 4.92, 1)]
```

Industry Goals

1. Build a recommendation engine that works.

Industry Goals

1. Build a recommendation engine that works.

```
[("Singin' in the Rain (1952)", 4.13, 10219),

('Casablanca (1942)', 4.11, 24349),

('Pride and Prejudice (1995)', 4.11, 1734),

('To Kill a Mockingbird (1962)', 4.1, 14769),

('Wallace & Gromit: The Wrong Trousers (1993)', 4.07, 15022),

('"Philadelphia Story', 4.06, 6583),

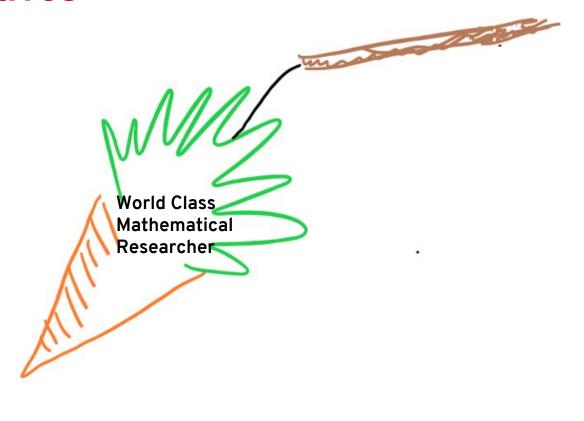
('"Wizard of Oz', 4.05, 23445),

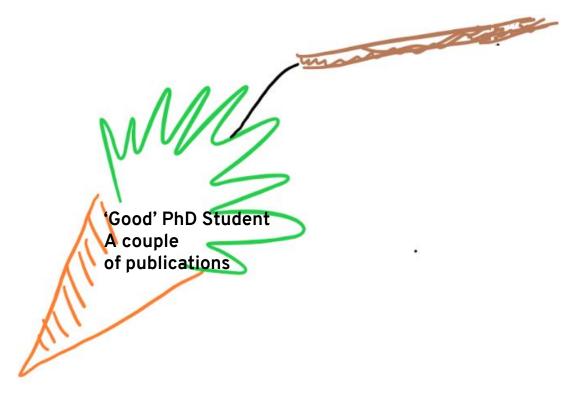
('Wallace & Gromit: A Close Shave (1995)', 4.05, 12073),

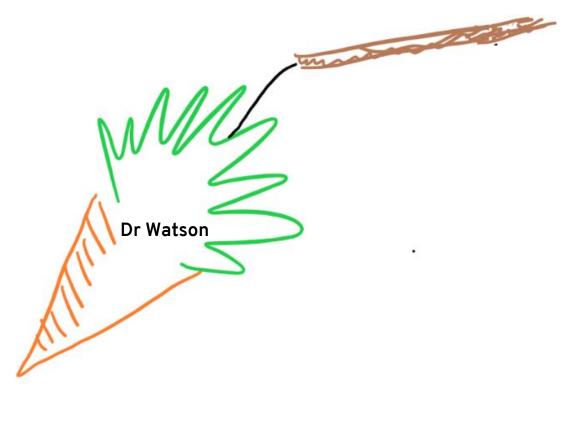
('Sense and Sensibility (1995)', 4.04, 20667),

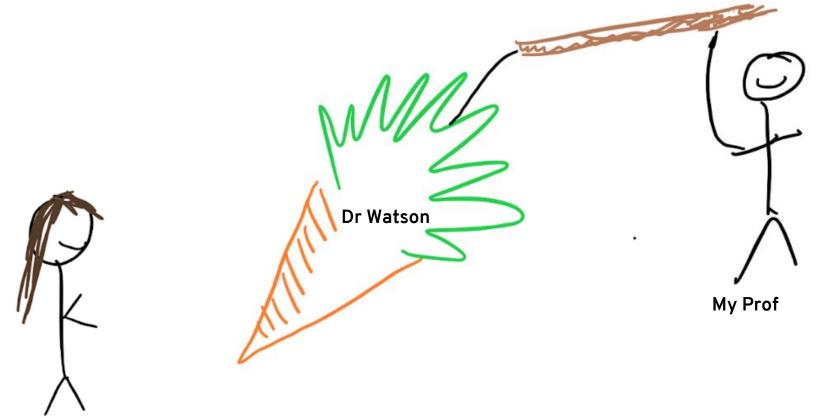
('"Sound of Music', 4.03, 14049)]
```











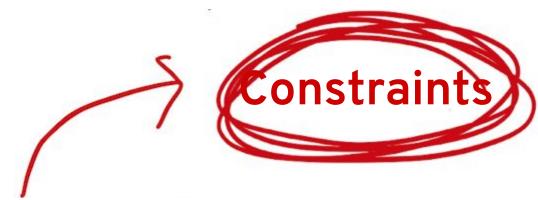
Industry Incentives

\$\$\$

Industry Incentives

Team \$\$\$ Company

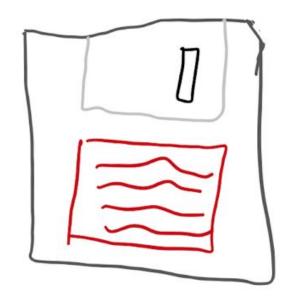
Goals



Barriers and Boundaries

Research = Strict

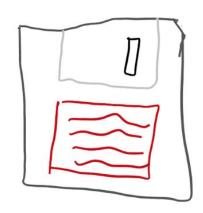
Production = Strict

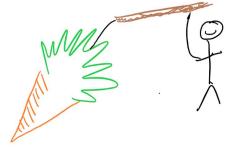


Goals

Incentives

Constraints





sophie@redhat.com @sophwats

radanalytics.io/applications/project-jiminy