What does rename() do?

Steve Loughran
stevel@hortonworks.com
@steveloughran

June 2017

HORTONWORKS

How do we safely persist
& recover state?

HORTONWORKS

EEEEEEEEEEEEEEEEEEEEEEEE

3

Why?

@ Save state for when application is restarted

® Publish data for other applications

® Process data published by other applications

® Work with more data than fits into RAM

@ Share data with other instances of same application

® Save things people care about & want to get back

© Hortonworks Inc. 2011 — 2017 All Rights Reserved

HORTONWORKS

DISKETTES / DISQUETTES
DISKETTEN / DISKETTES

Facebook Prineville Datacentre
1+ Exabyte on HDFS + cold store
Hive, Spark, ...

FileSystem.rename()

Model and APIs

Gi O MR el
AP ' N
HORTONWORKS
POWERING THE FUTURE OF DATA

Structured data: algebra

Pt

HORTONWORKS'

D

A History and Evaluation
of System R

Donald D. Chamberlin Thomas G. Price

Morton M. Astrahan Franco Putzolu

Michael W. Blasgen Patricia Griffiths Selinger
James N. Gray Mario Schkolnick

W. Frank King Donald R. Slutz

Bruce G. Lindsay Irving L. Traiger
Raymond Lorie Bradford W. Wade
James W. Mehl Robert A. Yost

IBM Research Laboratory
San Jose, California

1. Introduction

Throughout the history of infor-
mation storage in computers, one of SUMMARY: System R, an experimental database system,
the most readily observable trends oo constructed to demonstrate that the usability advantages
has been the focus on data indepen- f th lati | dat del b lized i t ith
dence. C.J. Date [27] defined data ©f the relational da a model can be realized in a sys em wi
independence as “immunity of ap- the€ complete function and high performance required for
plications to change in storage struc- everyday production use. This paper describes the three
ture and access strategy.” Modern principal phases of the System R project and discusses some
database systems offer data indepen- of the lessons learned from System R about the design of

dence by providing a high-level user o a4iona| systems and database systems in general.
interface through which users deal

with the information content of their ﬂ
data, rather than the various bits, . H\ﬁ; NS
HORTONWORKS

© Hortonworks Inc. 2011 — 2017 All Rights Reserved

File-System

Directories and files

Posix with stream metaphor

Posix: hierarchical (distributed?) filesystems
A PACHE &

org.apache.hadoop.fs.FileSystem

0.#0 Q

hdfs wasb swift gCs

11 © Hortonwor ks Inc. 2011 — 2017 All Rights Reserved HORTONWORKS'

val work = new Path("s3a://stevel-frankfurt/work")

val fs = work.getFileSystem(new Configuration())

val taske® = new Path(work, "taskee")

fs.mkdirs(taskeo)

val out = fs.create(new Path(taskeo, "part-00"), false)

out.writeChars("hello™)

out.close();

fs.listStatus(taskeo).foreach(stat =>
fs.rename(stat.getPath, work)

)

val statuses = fs.listStatus(work).filter(.isFile)

require("part-00" == statuses(0).getPath.getName)

rename() gives us O(1) atomic task commits

HDFS Namenode

/

work

AN

_temp part-01

AN

task-00 task-01
= _
part-00 part-01

rename("/work/ temp/taskeo/*", "/work")

13 © Hortonworks Inc. 2011 — 2017 All Rights Reserved

Datanode-01

Y
N—

00

—
Datanode-03

Datanode-02

Y
N—

01

00

N—

<
N—

00
01

—
Datanode-04

HORTONWORKS'

D

Amazon S3 doesn't have a rename()

/ S3 Shards
Y Y
N— N—
work ‘
00 | 01 i
‘//,/”‘\\\\» —
Y
task-00 task-01 i
el (
part-00 part-01 fféiffi
LIST ork/ temp/task-01/%*
/work/_temp/ /

COPY /work/_temp/task-01/part-01 /work/part-01
DELETE /work/_temp/task-01/part-01

HORTONWORKS'

14 Hortonworks Inc. 2011 — 2017 All Rights Reserved

Fix: fundamentally rethink how we commit

work

part-01

POST /work/part-01?uploads => UploadID

POST /work/part@l?uploadId=UploadID&partNumber=01
POST /work/part@l?uploadIld=UploadID&partNumber=02
POST /work/part@l?uploadId=UploadID&partNumber=03

15 © Hortonworks Inc. 2011 — 2017 All Rights Reserved

S3 Shards
-~ N N
e N
00
o1 00
N— S~
< TN
_/v
00
o1
o1
vv

HORTONWORKS'

job manager selectively completes tasks' multipart uploads

work

~

part-00 I part-01

(somehow 1list pending uploads of task 01)

POST /work/part-0l1l?uploadId=UploadID
<CompleteMultipartUpload>

<Part>
<PartNumber>01</PartNumber><ETag>44a3</ETag>

<PartNumber>02</PartNumber><ETag>29cb</ETag>
<PartNumber>03</PartNumber><ETag>laac</ETag>
</Part>
</CompleteMultipartUpload>

16 © Hortonworks Inc. 2011 — 2017 All Rights Reserved

S3 Shards
Y Y
N— N—
00
:e1i 00
— —
< R
N— " v
00
'a1i |
' o1 '
SNS—) ——

HORTONWORKS

Pt

HORTONWORKS'

What else to rethink?

@ Hierarchical directories to tree-walk
==> |list & work with all files under a prefix;

e seek() read() sequences
==> HTTP-2 friendly scatter/gather 10
read((bufferl, 10 KB, 200 KB), (buffer2, 16 MB, 4 MB))

® How to work with Eventually Consistent data?

® or:is everything just a K-V store with some search mechanisms?

et

18 © Hortonwor ks Inc. 2011 — 2017 All Rights Reserved HORTONWORKS'

typedef struct record struct {
int fieldl, field2;
long next;

} record;

int fd = open("/shared/dbase", O CREAT | O EXCL);
record* data = (record*) mmap(NULL, 8192,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

(*data).fieldl += 5;
data->field2 = data->fieldl;

msync(record, sizeof(record), MS_SYNC | MS_INVALIDATE);

typedef struct record struct {
int fieldl, field2;
record struct* next;

} record;

int fd = open("/shared/dbase");
record* data = (record*) pmem _map(fd);

// lock ?

(*data).fieldl += 5;
data->field2 = data->fieldl;

// commit ?

NVM moves the commit problem into memory 1/O

® How to split internal state into persistent and transient?

@ When is data saved to NVM (SL1-SL3 cache flushed, sync in memory
buffers, ...)

@ How to co-ordinate shared R/W access over RDMA?

® How do we write apps for a world where rebooting doesn't reset our state?

Catch up: read "The Morning Paper" summaries of research

et

22 © Hortonworks Inc. 2011 — 2017 All Rights Reserved HORTONWORKS'

Summary: Storage is moving in different directions

® Blobstore APIs address some scale issues, but don't match app expectations
for file/dir behaviour; inefficient read/write model

® Non volatile memory is the other radical change
@ Posix metaphor/API isn't suited to either —what next?

® SQL makes all this someone else's problem
(leaving only O/R mapping, transaction isolation...)

et

23 © Hortonworks Inc. 2011 — 2017 All Rights Reserved HORTONWORKS'

Questions?

HORTONWORKS

© Hortonworks Inc. 2011 — 2017. All Rights Reserved POWERING THE FUTURE OF DATA"

