
1 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

What	does	rename()	do?
Steve	Loughran
stevel@hortonworks.com	
@steveloughran

June	2017

2 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

How	do	we	safely	persist	
&	recover	state?

3 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

Why?

⬢ Save	state	for	when	application	is	restarted

⬢ Publish	data	for	other	applications

⬢ Process	data	published	by	other	applications

⬢ Work	with	more	data	than	fits	into	RAM

⬢ Share	data	with	other	instances	of	same	application

⬢ Save	things	people	care	about	&	want	to	get	back

FAT8
dBASE II	&	Lotus	1-2-3
int 21h

Linux:	ext3,	reiserfs,	ext4
sqlite,	mysql,	leveldb

open(path, O_CREAT|O_EXCL)
rename(src, dest)

Windows	NT,	XP
NTFS
Access,	Excel

CreateFile(path, CREATE_NEW,...)
MoveFileEx(src, dest, MOVEFILE_WRITE_THROUGH)

Facebook	Prineville	Datacentre
1+	Exabyte	on	HDFS	+	cold	store
Hive,	Spark,	...

FileSystem.rename()

7 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

Model	and	APIs

8 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

Structured	data:	algebra

9 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

10 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

File-System
Directories	and	files

Posix with	stream	metaphor

11 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

org.apache.hadoop.fs.FileSystem

hdfs s3awasb adlswift gcs

Posix:	hierarchical	(distributed?)	filesystems

val work = new Path("s3a://stevel-frankfurt/work")
val fs = work.getFileSystem(new Configuration())
val task00 = new Path(work, "task00")
fs.mkdirs(task00)
val out = fs.create(new Path(task00, "part-00"), false)
out.writeChars("hello")
out.close();
fs.listStatus(task00).foreach(stat =>
fs.rename(stat.getPath, work)

)
val statuses = fs.listStatus(work).filter(_.isFile)
require("part-00" == statuses(0).getPath.getName)

13 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

rename()	gives	us	O(1)	atomic	task	commits

/

work

_temp

part-00 part-01

00

00

00

01

01
01

part-01

rename("/work/_temp/task00/*", "/work")

task-00 task-01

HDFS	Namenode Datanode-01

Datanode-03

Datanode-02

Datanode-04

14 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

Amazon	S3	doesn't	have	a	rename()

/

work

_temp

part-00 part-01

00

00

00

01

01

part-01

LIST /work/_temp/task-01/*

task-00 task-01

01

01

01

COPY /work/_temp/task-01/part-01 /work/part-01
DELETE /work/_temp/task-01/part-01

01

S3	Shards

15 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

part-01

01
01

01

Fix:	fundamentally	rethink	how	we	commit

/

work

00

00

00

POST /work/part-01?uploads => UploadID

POST /work/part01?uploadId=UploadID&partNumber=01
POST /work/part01?uploadId=UploadID&partNumber=02
POST /work/part01?uploadId=UploadID&partNumber=03

S3	Shards

16 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

job	manager	selectively	completes	tasks'	multipart	uploads

/

work

part-00 00

00

00

part-01

(somehow list pending uploads of task 01)

01

01

01

POST /work/part-01?uploadId=UploadID
<CompleteMultipartUpload>
<Part>
<PartNumber>01</PartNumber><ETag>44a3</ETag>
<PartNumber>02</PartNumber><ETag>29cb</ETag>
<PartNumber>03</PartNumber><ETag>1aac</ETag>

</Part>
</CompleteMultipartUpload>

part-01

01

01

01

S3	Shards

17 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

S3A	O(1)	zero-rename	commit	demo!

18 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

What	else	to	rethink?

⬢ Hierarchical	directories	to	tree-walk
==> list	&	work	with	all	files	under	a	prefix;

⬢ seek() read() sequences
==> HTTP-2	friendly	scatter/gather	IO
read((buffer1, 10 KB, 200 KB), (buffer2, 16 MB, 4 MB))

⬢ How	to	work	with	Eventually	Consistent	data?

⬢ or:	is	everything	just	a	K-V	store	with	some	search	mechanisms?

SSD	via	SATA
SSD	via	NVMe/M.2
Future	NVM	technologies

typedef struct record_struct {
int field1, field2;
long next;

} record;

int fd = open("/shared/dbase", O_CREAT | O_EXCL);
record* data = (record*) mmap(NULL, 8192,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

(*data).field1 += 5;
data->field2 = data->field1;

msync(record, sizeof(record), MS_SYNC | MS_INVALIDATE);

typedef struct record_struct {
int field1, field2;
record_struct* next;

} record;

int fd = open("/shared/dbase");
record* data = (record*) pmem_map(fd);

// lock ?

(*data).field1 += 5;
data->field2 = data->field1;

// commit ?

22 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

NVM	moves	the	commit	problem	into	memory	I/O

⬢ How	to	split	internal	state	into	persistent	and	transient?

⬢ When	is	data	saved	to	NVM	($L1-$L3	cache	flushed,	sync	in	memory	
buffers,	...)

⬢ How	to	co-ordinate	shared	R/W	access	over	RDMA?

⬢ How	do	we	write	apps	for	a	world	where	rebooting	doesn't	reset	our	state?

Catch	up:	read	"The	Morning	Paper"	summaries	of	research

23 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved

Summary:	Storage	is	moving	in	different	directions

⬢ Blobstore APIs	address	some	scale	issues,	but	don't	match	app	expectations	
for	file/dir behaviour;	inefficient	read/write	model

⬢ Non	volatile	memory	is	the	other	radical	change

⬢ Posix metaphor/API	isn't	suited	to	either	—what	next?

⬢ SQL	makes	all	this	someone	else's	problem
(leaving	only	O/R	mapping,	transaction	isolation...)	

24 ©	Hortonworks	Inc.	2011	– 2017 All	Rights	Reserved24 ©	Hortonworks	Inc.	2011	– 2017.	All	Rights	Reserved

Questions?

