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How do we safely persist
& recover state?
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Why?

@ Save state for when application is restarted

® Publish data for other applications

® Process data published by other applications

® Work with more data than fits into RAM

@ Share data with other instances of same application

® Save things people care about & want to get back
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Facebook Prineville Datacentre
1+ Exabyte on HDFS + cold store
Hive, Spark, ...

FileSystem.rename()



Model and APIs
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Structured data: algebra
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1. Introduction

Throughout the history of infor-
mation storage in computers, one of  SUMMARY: System R, an experimental database system,
the most readily observable trends oo constructed to demonstrate that the usability advantages
has been the focus on data indepen- f th lati | dat del b lized i t ith
dence. C.J. Date [27] defined data  ©f the relational da a model can be realized in a sys em wi
independence as “immunity of ap- the€ complete function and high performance required for
plications to change in storage struc- everyday production use. This paper describes the three
ture and access strategy.” Modern  principal phases of the System R project and discusses some
database systems offer data indepen-  of the lessons learned from System R about the design of

dence by providing a high-level user o a4iona| systems and database systems in general.
interface through which users deal

with the information content of their ﬂ
data, rather than the various bits, . H\ﬁ; NS
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File-System

Directories and files

Posix with stream metaphor




Posix: hierarchical (distributed?) filesystems
A PACHE &

org.apache.hadoop.fs.FileSystem

0.#0 Q

hdfs wasb swift gCs
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val work = new Path("s3a://stevel-frankfurt/work")

val fs = work.getFileSystem(new Configuration())

val taske® = new Path(work, "taskee")

fs.mkdirs(taskeo)

val out = fs.create(new Path(taskeo, "part-00"), false)

out.writeChars("hello™)

out.close();

fs.listStatus(taskeo).foreach(stat =>
fs.rename(stat.getPath, work)

)

val statuses = fs.listStatus(work).filter( .isFile)

require("part-00" == statuses(0).getPath.getName)



rename() gives us O(1) atomic task commits

HDFS Namenode

/

work

AN

_temp part-01

AN

task-00 task-01
= _
part-00 part-01

rename("/work/ temp/taskeo/*", "/work")

13 © Hortonworks Inc. 2011 — 2017 All Rights Reserved

Datanode-01

Y
N—

00

—
Datanode-03

Datanode-02

Y
N—

01

00

N—

<
N—

00
01

—
Datanode-04

HORTONWORKS'



D

Amazon S3 doesn't have a rename()

/ S3 Shards
Y Y
N— N—
work ‘
00 | 01 i
‘//,/”‘\\\\» —
Y
task-00 task-01 i
el (
part-00 part-01 fféiffi
LIST ork/ temp/task-01/%*
/work/_temp/ /

COPY /work/_temp/task-01/part-01 /work/part-01
DELETE /work/_temp/task-01/part-01
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Fix: fundamentally rethink how we commit

work

part-01

POST /work/part-01?uploads => UploadID

POST /work/part@l?uploadId=UploadID&partNumber=01
POST /work/part@l?uploadIld=UploadID&partNumber=02
POST /work/part@l?uploadId=UploadID&partNumber=03
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job manager selectively completes tasks' multipart uploads

work

~

part-00 I part-01

(somehow 1list pending uploads of task 01)

POST /work/part-0l1l?uploadId=UploadID
<CompleteMultipartUpload>

<Part>
<PartNumber>01</PartNumber><ETag>44a3</ETag>

<PartNumber>02</PartNumber><ETag>29cb</ETag>
<PartNumber>03</PartNumber><ETag>laac</ETag>
</Part>
</CompleteMultipartUpload>
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What else to rethink?

@ Hierarchical directories to tree-walk
==> |list & work with all files under a prefix;

e seek() read() sequences
==> HTTP-2 friendly scatter/gather 10
read((bufferl, 10 KB, 200 KB), (buffer2, 16 MB, 4 MB))

® How to work with Eventually Consistent data?

® or:is everything just a K-V store with some search mechanisms?

et
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typedef struct record struct {
int fieldl, field2;
long next;

} record;

int fd = open("/shared/dbase", O CREAT | O EXCL);
record* data = (record*) mmap(NULL, 8192,
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

(*data).fieldl += 5;
data->field2 = data->fieldl;

msync(record, sizeof(record), MS_SYNC | MS_INVALIDATE);



typedef struct record struct {
int fieldl, field2;
record struct* next;

} record;

int fd = open("/shared/dbase");
record* data = (record*) pmem _map(fd);

// lock ?

(*data).fieldl += 5;
data->field2 = data->fieldl;

// commit ?



NVM moves the commit problem into memory 1/O

® How to split internal state into persistent and transient?

@ When is data saved to NVM (SL1-SL3 cache flushed, sync in memory
buffers, ...)

@ How to co-ordinate shared R/W access over RDMA?

® How do we write apps for a world where rebooting doesn't reset our state?

Catch up: read "The Morning Paper" summaries of research

et
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Summary: Storage is moving in different directions

® Blobstore APIs address some scale issues, but don't match app expectations
for file/dir behaviour; inefficient read/write model

® Non volatile memory is the other radical change
@ Posix metaphor/API isn't suited to either —what next?

® SQL makes all this someone else's problem
(leaving only O/R mapping, transaction isolation...)

et
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Questions?
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